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Abstract
Young children can quickly and intuitively represent the number of objects in a 
visual scene through the Approximate Number System (ANS). The precision of the 
ANS – indexed as the most difficult ratio of two numbers that children can reliably 
discriminate – is well known to improve with development: whereas infants require 
relatively large ratios to discriminate number, children can discriminate finer and 
finer changes in number between toddlerhood and early adulthood. Which factors 
drive the developmental improvements in ANS precision? Here, we investigate the 
influence of four non-numeric dimensions – area, density, line length, and time – on 
ANS development, exploring the degree to which the ANS develops independently 
from these other dimensions, from inhibitory control, and from domain-general fac-
tors such as attention and working memory that are shared between these tasks. A 
sample of 185 children between the ages of 2 and 12 years completed five discrimi-
nation tasks: approximate number, area, density, length, and time. We report three 
main findings. First, logistic growth models applied to both accuracy and Weber 
fractions (w; an index of ANS precision) across age reveal distinct developmental 
trajectories across the five dimensions: while area and length develop by adoles-
cence, time and density do not develop fully until early adulthood, with ANS preci-
sion developing at an intermediate rate. Second, we find that ANS precision develops 
independently of the other four dimensions, which in turn develop independently of 
the ANS. Third, we find that ANS precision also develops independently from indi-
vidual differences in inhibitory control (indexed as the difference in accuracy and w 
between Congruent and Incongruent ANS trials). Together, these results are the 
first to provide evidence for domain-specific improvements in ANS precision, and 
place children’s maturing perception of number, space, and time into a broader 
developmental context.

RESEARCH HIGHLIGHTS

•	 The Approximate Number System (ANS) provides children with in-
tuitive but imprecise representations of number.

•	 Here, we test which factors drive the improvement of ANS preci-
sion with age by comparing the developmental trajectories of the 
ANS with those of area, density, line length, and time representa-
tions between toddlerhood and adulthood.

•	 This is the first study to report concurrent Weber fractions for these 
five dimensions across a broad age; in addition, growth modelling 
and partial correlation analyses revealed that ANS precision de-
velops independently of area, density, length, and time, and from 
children’s ability to inhibit non-numeric dimensions during the ANS 
task.

•	 These results place children’s developing sense of number, space, 
and time in a broader and richer developmental context.
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1  | INTRODUCTION

Thinking about number and quantity is at the heart of everything we 
do: we select the shortest line at the grocery store; choose the least 
dense part of the auditorium to sit in; estimate how much wine in 
our glass is enough. Our ability to reason about number, space, and 
time is foundational for other cognitive abilities, and individual differ-
ences in these representations predict musical performance (Grondin 
& Killeen, 2009), sports performance (Witt, Linkenauger, Bakdash, 
& Proffitt, 2008), and everyday activities such as reasoning about 
money (Marques & Dehaene, 2004). Thus, understanding the ontol-
ogy and the development of number, space, and time representa-
tions is of interest in many subfields of psychology and neuroscience, 
including developmental, cognitive, comparative and computational 
psychology.

Although children’s early emerging representations of space and 
time have long been the focus of study, research has recently shown 
that most human and non-human animals also have an intuitive sense 
of number, often termed the Approximate Number System (ANS). For 
example, within hours of birth, newborns expect the number of visual 
objects to match perceptually to the number of sounds that they hear 
(Izard, Sann, Spelke, & Streri, 2009). Later in development, babies that 
have habituated to a particular number of objects (e.g. 32 dots) can 
subsequently detect numerically large changes in the display (e.g. a 
change to 16 dots; Feigenson, Dehaene, & Spelke, 2004; Jordan & 
Brannon, 2006; Xu & Spelke, 2000). The ANS has similarly been found 
in many non-human animals, including rhesus macaques (Brannon 
& Terrace, 1998; Cantlon & Brannon, 2006; Nieder & Miller, 2004), 
rats (Meck & Church, 1983), pigeons (Brannon, Wusthoff, Gallistel, 
& Gibbon, 2001; Emmerton, 1998), and even guppies (Piffer, Agrillo, 
& Hyde, 2011). Converging evidence from cognitive, developmental, 
computational, comparative and neurophysiological psychology sug-
gests that the ANS is localized to a particular brain region – the intra-
parietal sulcus (IPS; Emerson & Cantlon, 2015; Nieder, 2005; Piazza, 
Izard, Pinel, Le Bihan, & Dehaene, 2004; Roitman, Brannon, & Platt, 
2007) – and that it is universally shared across different cultures, 
including those that do not have words for numbers or mathematical 
concepts (Frank, Everett, Fedorenko, & Gibson, 2008; Gordon, 2004; 
Pica, Lemer, Izard, & Dehaene, 2004).

The cost of having such an intuitive number system, however, is its 
imprecision. Our ability numerically to discriminate two sets of objects 
depends on their ratio: discriminating a large ratio, such as 30 vs. 10 
dots (a ratio of 3.0) is easy even for newborns (Xu & Spelke, 2000), 
while discriminating a small ratio, such as 15 vs. 14 dots (a ratio of 1.07) 
is challenging even for most adults (Halberda, Ly, Wilmer, Naiman, & 
Germine, 2012; Libertus, Odic, & Halberda, 2013). Individual differ-
ences in the ANS are typically indexed through each person’s Weber 
fraction (w), a behavioral index of the noise in the underlying neural 
tuning curves that represent number (Halberda & Odic, 2014; Nieder, 
2005; Piazza et al., 2004; Pica et al., 2004).

Work by Halberda and colleagues (2012) demonstrates  
that – despite the universality of the ANS – there are large individual 

differences in the precision of the system at virtually every age. ANS pre-
cision also undergoes significant developmental improvement with age. 
Thus, while a typical 9-month-old infant has a w of about 0.5 (i.e. can 
reliably discriminate ratios of about 1.5), a typical 19-year-old college 
student has w values of about 0.15 (Cordes & Brannon, 2008; Halberda 
et al., 2012; Libertus et al., 2012; Xu & Spelke, 2000). ANS development 
begins from very early in infancy and does not peak until late adoles-
cence or early adulthood, subsequently declining in old age (Halberda 
et al., 2012).

Why does the ANS show these large developmental changes? In 
other words, what are the main factors that drive the development 
of ANS precision? The existing literature broadly suggests three 
possibilities.

The first possibility is that the ANS, as a dedicated system for 
representing number, may develop as a result of domain-specific 
effects, including the maturation of specific brain circuits that imple-
ment it, or alternatively as a result of children’s increased familiar-
ity with and expertise at using the system. In other words, the ANS 
may develop for its own reasons and along its own developmental 
trajectory. As an analogy to this explanation, consider the matura-
tion of children’s visual acuity: while all typically developing children 
are born with the ability to see, the development of very specialized 
muscles and circuits, including the orbital muscles, the fovea, and 
dedicated circuits between the eyes and the visual cortex, will lead 
to a developmental peak in early toddlerhood (Mayer & Dobson, 
1982; Yuodelis & Hendrickson, 1986). Because these muscles and 
circuits are dedicated to vision, one can state that – despite the 
fact that many other brain and body regions are developing in par-
allel with vision – the development of visual acuity is causally inde-
pendent from the development of, for example, audition or motor 
control. Domain-specific development of the ANS is supported by 
the finding that its precision is especially improved by education in 
mathematics (Piazza, Pica, Izard, Spelke, & Dehaene, 2013; see also 
Lindskog, Winman, & Juslin, 2014), and that an infant’s ANS preci-
sion at 6 months predicts their precision in preschool (Starr, Libertus, 
& Brannon, 2013).

The second possibility is that the development of ANS precision 
has nothing to do with the ANS itself, and that, instead, it may be 
capturing children’s ability to process and discriminate non-numeric 
dimensions, including object density, surface area, contour extent, 
etc. (Cantrell & Smith, 2013; Dakin, Tibber, Greenwood, Kingdom, 
& Morgan, 2011; Defever, Reynvoet, & Gebuis, 2013; Gebuis & 
Reynvoet, 2012; Szucs, Nobes, Devine, Gabriel, & Gebuis, 2013). This 
theory is motivated by the observation that, on a typical task measur-
ing ANS precision, participants are asked to identify the numerically 
larger set of dots (e.g. the number of yellow vs. blue dots in Figure 1). 
However, such a display necessarily contains information about a host 
of non-numeric dimensions, including the size and density of the dots. 
Children may perform above chance, then, not because they have an 
intuitive number system, but instead by discriminating the myriad of 
correlated non-numeric dimensions. Hence, development in number 
discrimination tasks may, in fact, simply reflect an improvement in 
these non-numeric dimensions.
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The idea that ANS precision may be contaminated by non-numeric 
dimensions is supported by arguments for a generalized magnitude 
system, the hypothesized unified sense of magnitude that underpins 
all reasoning about number, space, and time (Bueti & Walsh, 2009; 
Lourenco & Longo, 2010, 2011; Walsh, 2003). The existence of the 
generalized magnitude system is supported by several key findings. 
First, many non-numeric dimensions, especially area and density, influ-
ence number discrimination performance (e.g. participants frequently 
select the denser display as the more numerous; Dakin et al., 2011; 
Durgin, 1995; Gebuis & Reynvoet, 2012; Szucs et al., 2013). Second, 
there are a number of cross-over and association effects between 
number, space, and time, from infancy onwards (de Hevia, Izard, 
Coubart, Spelke, & Streri, 2014; Lourenco & Longo, 2010), including 
effects showing that the perception of large numbers biases our atten-
tion towards the right side of space (Fischer, Castel, Dodd, & Pratt, 
2003; Wood, Willmes, Nuerk, & Fischer, 2008) and towards longer 
durations (Walsh, 2003). Third, research has repeatedly shown that 
number, space, and time representations are all instantiated in the IPS 
(Bueti & Walsh, 2009; Pinel, Piazza, Le Bihan, & Dehaene, 2004), that 
administration of electrical stimulation to this region affects number, 
space, and time perception (Cappelletti et al., 2013), and that single-
unit recordings reveal an overlap in the neurons that code for number 
and line length (Tudusciuc & Nieder, 2007). Under some formulations 
of this theory, the generalized magnitude system differentiates into 
several sub-systems as children learn about and interact with the 
world (Cantrell & Smith, 2013; Lourenco & Longo, 2010, 2011), while 
others argue that the generalized magnitude system persists deep into 
adulthood, providing a common currency by which we represent and 
reason about magnitude (Bueti & Walsh, 2009; Fabbri, Cancellieri, 
& Natale, 2012; Lu, Mo, & Hodges, 2011; Xuan, Zhang, He, & Chen, 
2007). Hence, ANS development could instead be the development of 
a single, unified, generalized magnitude system, and thus the devel-
opment of the ANS should be tightly coupled to the development of 
space and time representations.

The third possibility is that the primary factor driving ANS devel-
opment is the maturation of various domain-general abilities, includ-
ing attention, working-memory, inhibitory control, or more general 
parietal lobe maturation. For example, Xenidou-Dervou, De Smedt, 
van der Schoot, and van Lieshout (2013) have shown that ANS dis-
crimination tasks put a load on working memory, while Ratcliff, Love, 
Thompson, and Opfer (2012) have shown that various decision-
making factors, including response biases, play into children’s and 
adult’s performance. One especially likely factor that may drive ANS 

development is children’s improving inhibitory control: Gilmore and 
colleagues (2013) have shown that ANS precision at least partially cap-
tures how well children perform on trials in which they have to inhibit 
various non-numeric dimensions, such as size, in order to answer the 
number question correctly (i.e. Incongruent trials, where the more 
numerous dots are smaller than the less numerous dots), as opposed 
to trials where various non-numeric dimensions correlate with number 
(i.e. Congruent trials, where the more numerous dots are also bigger). 
ANS development, then, may simply be capturing the development of 
children’s ability to precisely attend to number as opposed to other 
dimensions (although see DeWind, Adams, Platt, & Brannon, 2015; 
Keller & Libertus, 2015; Starr & Brannon, 2015b).

Overall, theories accounting for the development of ANS preci-
sion can be split into three (non-mutually exclusive) possibilities: (1) 
domain-specific ANS development, (2) the development of several 
other non-numeric dimensions, including area, density, line length and 
time, and (3) the maturation of domain-general abilities such as inhib-
itory control.

The existing data on ANS development and its relationship to non-
numeric dimensions unfortunately cannot adjudicate among these 
three possibilities. First, few studies have examined the development 
of the ANS in conjunction with other dimensions. Odic, Libertus, 
Feigenson, and Halberda (2013; see also Odic, Pietroski, Hunter, 
Lidz, & Halberda, 2013) showed that ANS precision develops inde-
pendently from surface-area precision, but only studied a narrow age-
range of 3- to 6-year-old children. Work by Starr and Brannon (2015a) 
has investigated the relationship between number, brightness and line 
length, but focused primarily on correlations between the precision 
of these dimensions, showing differences in the correlations between 
preschoolers and adults. Correlations between dimensions, how-
ever, can stem from several factors, including shared domain-general 
skills such as working memory (see Odic et al., 2016 and Van Opstal 
& Verguts, 2013), making it difficult to make any strong claims about 
the co-development of these dimensions. Other studies have simi-
larly focused on the development of number and one or two other 
dimensions, but usually over a narrow age range that does not capture 
the entire developmental trajectory for these dimensions (e.g. Abreu-
Mendoza & Arias-Trejo, 2015; Brannon, Lutz, & Cordes, 2006; Dormal 
& Pesenti, 2012; Droit-Volet & Wearden, 2001). Here, we report data 
on a broad age-range of participants, namely 2-  to 12-year-old chil-
dren and college-aged adults, and across five discrimination tasks: 
number, area, density, line length and time. Unlike previous work, we 
can quantify the developmental trajectory for each dimension, and 

F I G U R E   1 Example stimuli from the five discrimination tasks. In the Time task, the two characters are animated and hold their breath for a 
certain amount of time
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examine whether number develops independently from any or all of 
these dimensions.

The second major challenge in understanding ANS development 
has been how to control for all possible domain-general factors, 
including attention, working memory, inhibitory control, etc., that may 
be responsible for the relationship between the ANS and non-numeric 
dimensions, as well as for any developmental effects. Here, we take 
a novel approach to this problem: rather than attempting to measure 
each domain-general ability individually, we instead rely on the fact 
that, whatever the range of possible domain-general factors that affect 
ANS development may be, they must be shared between the ANS and 
the four non-numeric dimensions. Droit-Volet, Clément, and Fayol,  
(2008), for example, have demonstrated that time discrimination tasks 
put a large load on children’s working memory; hence, by controlling 
for time discrimination performance when examining ANS develop-
ment, we can also largely control for working memory differences in 
ANS precision. Because attention, decision-making factors, and even 
general parietal lobe development should all be shared across number, 
area, density, length, and time, controlling for these factors should also 
largely control for the various domain-general abilities that could be 
driving ANS development (see Odic et al., 2016 for evidence that this 
approach is appropriate for number and time representations when 
concurrently measuring working memory).

The goals of our experiment are, thus, twofold: besides being the 
first to report developmental data on a range of quantity discrimina-
tion tasks across a broad age range, we also expect to find different 
patterns of results depending on which of the three theories reviewed 
above is the best explanation for ANS development. If the develop-
ment of the ANS is accounted for by the development of a generalized 
magnitude system, we should find that all age-related variability in 
ANS precision is accounted for by the age-related differences in area, 
density, length and time precision. In addition, because these dimen-
sions have been shown to be represented in the IPS, controlling for 
these dimensions should also largely control for more domain-general 
development of the parietal lobe and the IPS itself. Furthermore, by 
examining the development of children’s performance on Congruent 
versus Incongruent ANS trials, we can assess the role of inhibitory 
control development on the ANS (Gilmore et al., 2013). Importantly, if 
we found that the ANS develops along distinct developmental trajec-
tories and independently from area, length, time, density and inhibi-
tory control, we would have evidence for an important role of domain-
specific ANS development.

2  | EXPERIMENT

2.1 | Participants

A total of 185 children between the ages of 2 and 12 participated 
in the study (93 boys and 92 girls; see Table 1). An additional 22 
children were excluded because they did not complete more than a 
third of the tasks, mostly as a result of inattentiveness. All children 
were individually tested at the local science museum – Vancouver’s 
Telus ScienceWorld LivingLab – in a dedicated, sound-attenuated T
A
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room. Parents waited outside the room while the child completed 
the task. All children were given a sticker as a prize for participating. 
An additional 15 undergraduates participated for course credit at the 
University of British Columbia.

2.2 | Methods and procedures

All stimuli were presented on a 11.3ʺ Macbook Air using custom-
made Psychtoolbox-3 scripts (Brainard, 1997). These scripts are freely 
available for download and for future research use (http://odic.psych.
ubc.ca/scripts/). Children were seated in front of the computer with 
the experimenter seated next to them. In order to reduce the poten-
tial effects of motor development on our results, the experimenter 
always pushed the buttons and the child was asked to respond to each 
trial verbally or by pointing.

We tested discrimination performance on five dimensions: approxi-
mate number, surface area, density, line length, and time, each described 
in detail below and illustrated in Figure 1. Because pilot testing showed 
that preschoolers could not complete all five tasks in a single sitting, we 
randomly split all children into one of two conditions: children either 
completed Number/Area/Density or Number/Length/Time tasks1 . 
Each of these conditions began with three trials from each dimension 
(e.g. three trials of Number, followed by three trials of Area, followed 
by three trials of Density) that allowed the experimenter to explain the 
task to the child. Subsequently, the trials were randomized and trials 
of the three dimensions were fully intermixed; this allowed us both 
to control for any task-order effects and to keep the child’s attention 
for longer. Adult participants completed all five tasks in an intermixed 
order; unlike children, however, adults were allowed to push their own 
buttons rather than respond verbally or by pointing.

Participants received auditory feedback from the computer 
throughout the entire experiment. In general, children took about 
5–8 minutes to complete the experiment, and adult participants took 
about 8–12 minutes to complete the experiment.

2.2.1 | Number task

Participants were shown displays of spatially separated blue and yellow 
dots within two rectangular frames, as shown in Figure 1, and asked to 
identify the side with more dots. Each set was associated with a cartoon 
character (e.g. Spongebob or a Smurf). The dots stayed on the screen 
for 500 milliseconds. The ratio of the dots was varied to control for dif-
ficulty, and could take the following values: 2.0 (20 vs. 10 dots), 1.5, 
1.2 or 1.06. Each ratio was presented eight times, yielding a total of 32 
Number trials. In an effort to control for children’s use of non-numeric 
dimensions, we controlled for the average and the cumulative area of 
the dots. In addition, by partialling out the individual differences in the 
four non-numeric discrimination tasks, we can also control for any con-
tributions of area, density, length, and time perception to the Number 
task. On half of the trials, the total surface area was congruent with the 
number of dots (i.e. the set with more dots had a higher cumulative sur-
face area; Congruent trials), and on the other half of the trials, the total 
surface area was incongruent with the number of dots (i.e. the set with 

more dots had a lower cumulative surface area; Incongruent trials). As 
discussed above, previous work by Gilmore and colleagues (2013) has 
suggested that the difference between these two types of trials may be 
indicative of children’s inhibitory control.

2.2.2 | Area task

Participants were shown displays of two amorphous blobs – one blue 
and one yellow (Figure 1) – and were asked to identify the larger blob. 
Each blob was presented in a rectangular frame and was associated 
with a cartoon character. The blobs stayed on the screen for 500 mil-
liseconds. The ratio of the blob sizes was varied to control for diffi-
culty, and could take the following values: 2.0 (212 vs. 106 pixel2), 1.5, 
1.2 or 1.06. Each ratio was presented eight times, yielding a total of 
32 area trials. Note that – in contrast to the previous work by Odic, 
Libertus, et al. (2013) – the two blobs were presented spatially sepa-
rated in order to better match the task demands of the number task.

2.2.3 | Density task

Participants were shown two clouds of blue and yellow dots that varied 
in density (Figure 1). These trials were generated in one of two ways: 
on half the trials, we kept the number of dots constant at 100 for both 
sides, but varied the total circular convex hull within which the dots 
were drawn. On the other half of the trials, we kept the convex hull con-
stant in a circle with a radius of 70 pixels, but varied the total number of 
dots. Density was defined as the number of dots per pixel of convex hull 
area. Thus, for example, a ratio of 2.0 could be instantiated in one of two 
ways: either by doubling the area of the convex hull from 15 393 pixels 
to 30 787 pixels (i.e. changing the radius from 70 to 99 pixels), or by 
halving the number of dots from 100 to 50; in either case, the number 
of dots/pixel is 0.003. As discussed in the Results section, participants 
performed identically on these two trial types. We found that children 
did not understand the word ‘denser’. Thus, in order to help children 
understand the task, we gave them a background story about the dots 
being lemmings that needed to huddle together for warmth; children 
were asked to identify whether the blue or the yellow lemmings were 
warmer. The two clouds of dots were presented within rectangular 
frames and stayed on the screen for 500 milliseconds. The ratio of the 
densities was varied to control for difficulty, and could take the follow-
ing values: 2.0 (0.006 vs. 0.003 dots/pixel), 1.5, 1.2 or 1.06. Each ratio 
was presented eight times, yielding a total of 32 density trials.

2.2.4 | Length task

Participants were shown a blue line and a yellow line drawn on the 
screen (Figure 1), and were asked to identify which line was longer. 
Each line was drawn within a rectangular frame associated with a car-
toon character. The lines stayed on the screen for 500 milliseconds. 
The ratio of the line lengths was varied to control for difficulty, and 
could take the following values: 2.0 (100 vs. 50 pixel), 1.5, 1.2 or 1.06. 
In order to make sure that children did not simply compare the tops 
of lines, each line was randomly oriented along its center axis; the 

http://odic.psych.ubc.ca/scripts/
http://odic.psych.ubc.ca/scripts/
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difference in orientation was always at least 15 degrees. Each ratio 
was presented eight times, yielding a total of 32 length trials.

2.2.5 | Time task

Participants were introduced to two characters – a dog and a panda 
– who had a breath-holding competition. In counterbalanced order, 
each animal would animate to hold their breath for a particular dura-
tion lasting between 500 and 2000 milliseconds (see Figure 1). After 
each animal had held their breath, the children were asked to identify 
which animal held their breath for longer. The animals were presented 
within rectangular frames. The ratio of the durations was varied to 
control for difficulty, and could take the following values: 2.0 (1200 
vs. 600 milliseconds), 1.5, 1.2 or 1.06. Each ratio was presented eight 
times, yielding a total of 32 time trials.

3  | RESULTS

We report our analyses in several steps. First, we test for standard ratio 
effects within each dimension and test whether any of the dimensions 
were more accurate than the others. Second, we model each participant’s 
data to a standard psychophysical model used in the literature to estimate 
Weber fractions (w) and lapse/guessing rates for each dimension. Third, 
we model the changes in the accuracy and w in each dimension with age, 
including estimating the age of maturity for each dimension. Finally, and 
most importantly, we test whether the developmental changes in num-
ber can be accounted for by the development of area, density, length, 
and/or time, or by inhibitory control (the difference between Congruent 
and Incongruent trials). The correlations between dimensions while con-
trolling for any age effects are reported in the Supplementary Material. 
All of the reported ANOVAs are corrected for sphericity.

3.1 | Ratio effects

The histograms and average accuracy for each dimension are pre-
sented in Table 1 and Figure 2 (top). Consistent with Weber’s law, 

each dimension showed a clear ratio effect. A 3 (Task: Number, Area, 
Density) × 4 (Ratio: 2.0, 1.5, 1.2, 1.06) repeated-measures ANOVA 
with accuracy as the dependent variable (DV) showed a main effect 
of Ratio [F(3, 300) = 115.92; p < .001] and Task [F(2, 200) = 168.34; 
p < .001], and a significant Task × Ratio interaction [F(6, 600) = 18.24; 
p < .001]. Contrasts revealed that this main effect of Task was carried 
by significantly better performance in Number (M = 72.54; SE = 1.21) 
compared with Density [M = 60.63; SE = 1.31; t(99) = 9.12; p < .001], 
and by significantly better performance in Area (M = 83.23; SE = 1.04) 
compared with Density [t(101) = 18.37; p < .001] and compared with 
Number [t(111) = −9.78; p < .001].

An analogous ANOVA with Number, Time, and Length likewise 
showed a main effect of Ratio [F(2, 182) = 73.82; p < .001] and 
Task [F(3, 273) = 92.34; p < .001], and no Task × Ratio interaction 
[F(6, 546) = 1.78; p = .10]. Contrasts revealed that the main effect 
of Task was driven by significantly better performance in Number 
(M = 73.76; SE = 1.47) compared with Time [M = 67.23; SE = 1.59; 
t(95) = 4.27; p < .05], and by significantly better performance in Length 
(M = 83.1; SE = 1.44) compared with Time [t(97) = 10.97; p < .001] 
and compared with Number [t(106) = −9.12; p < .001].

An additional independent samples t-test showed no significant 
difference between Time and Density accuracy [t(88) = 0.39; p = .69], 
nor between Length and Area accuracy [t(92) = 0.12; p = .90]. We 
also found no effect of Condition on the Number task: children in 
the Number/Area/Density condition performed equivalently well 
(M = 70.7%, n = 84, SD = 15.65%) to the children in the Number/
Length/Time condition [M = 69.4%, n = 99, SD = 13.44%; t(181) = .62, 
p = .54]. Finally, we did not find any difference between the area- vs. 
number-doubling Density Task trials [t(89) = 0.37; p = .71].

Taken together, these results suggest that all five dimensions 
showed ratio-dependent performance, consistent with Weber’s law, 
and that Area and Length accuracy was superior to Number accuracy, 
which in turn was significantly better than Time and Density accu-
racy. These results broadly replicate previous work (Abreu-Mendoza 
& Arias-Trejo, 2015; Droit-Volet et al., 2008; Odic et al., 2016; Odic, 
Libertus, et al., 2013; Starr & Brannon, 2015a, 2015b) and further add 
information about children’s perception of density.

F I G U R E   2 Histograms of average percentage correct and best-fit Weber fractions for each of the five tasks
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3.2 | Weber fractions

Weber fractions – an index of the underlying precision of quantity 
representations – were modelled using a two-parameter psychophysi-
cal model previously used by Halberda and Feigenson (2008) and Pica 
and colleagues (2004). This model assumes that the underlying rep-
resentations of number, time, density, etc. are normally distributed 
tuning curves with the single parameter w indexing their standard 
deviation (i.e. precision; for a review, see Halberda & Odic, 2014). In 
addition to this standard assumption, the model allows for a second 
parameter – the lapse rate – that can account for a constant percent-
age of trials that participants may have been guessing (e.g. a lapse rate 
of 0.10 indicates that participants were randomly guessing on 5% of 
trials, independent of ratio). More formally, Weber fractions and lapse 
rates were estimated using the equation

where Φ is the Gaussian cumulative distribution function. This model 
was fitted to each participant’s data for each task using R’s mle2 
function under the assumption of normally distributed errors, which 
converges on the best-fit parameters by minimizing the negative log-
likelihood value.

The histogram and average w values and lapse rates for each 
dimension are presented in Table 2 and Figure 2. Consistent with pre-
vious work, we found that the model could not successfully fit every 
participant’s data, most often because some participants were guess-
ing randomly on all of the trials and thus had an accuracy of about 
50%. As a result, these participants had either non-convergent mod-
els or unreasonable w estimates (i.e. values of more than 3.0) and 
extremely high lapse rates (i.e. 1.00, indicating pure guessing across all 
ratios). These children were excluded from any subsequent w analyses 
(see Table 2). In the remaining analyses, we always report data using 
both accuracy and w in order to maximize our sample and demonstrate 
that no reported finding is due to the excluded w data.

The average w values found in our five tasks are consistent with 
those previously measured in the literature for number (Halberda & 
Feigenson, 2008; Piazza et al., 2010), area (Odic, Libertus, et al., 2013; 
Odic, Pietroski, et al., 2013), time (Droit-Volet et al., 2008; Odic et al., 
2016), and length (Droit-Volet et al., 2008; Starr & Brannon, 2015a). 
The results also provide the first estimates of density w in children. 
In replication of the above results with accuracy, we found that the 
Number w (M = 0.32; SE = 0.001) was significantly worse than the 
Area w [M = 0.19; SE = 0.001; t(82) = 4.33; p < .001] and Length w 
[M = 0.13; SE = 0.001; t(78) = 4.57; p < .001], but significantly better 
than the Density w [M = 0.51; SE = 0.002; t(44) = 4.98; p < .001], and 
Time w [M = 0.35; SE = 0.001; t(55) = 2.47; p < .05].

3.3 | Effects of age

We examined the effects of age in two ways. First, we examined pair-
wise correlations between each dimension and age as a continuous 
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variable, excluding adults (whose higher age values may dispropor-
tionally affect the correlations). Because w values are non-normally 
distributed (Figure 2; see also Inglis & Gilmore, 2014), we instead 
used Spearman rank correlations. We found very strong correla-
tions between each dimension and age: Number accuracy (r = .67; 
n = 185; p < .001) and w (Spearman’s rho = −.64; n = 160; p < .001), 
Area accuracy (r = .63; n = 99; p < .001) and w (Spearman’s rho = −.67; 
n = 97; p < .001), Density accuracy (r = .53; n = 90; p < .001) and w 
(Spearman’s rho = −.35; n = 56; p < .001), Length accuracy (r = .62; 
n = 96; p < .001) and w (Spearman’s rho = −.64; n = 86; p < .001), and 
Time accuracy (r = .64; n = 85; p < .001) and w (Spearman’s rho = −.64; 
n = 63; p < .001)2 . We found no significant correlations between age 
and lapse rates with the exception of the Area task [r(109) = −.23; 
p < .05]. The most likely explanation of this result is that our partici-
pants guessed in an all-or-none fashion independent of age, and par-
ticipants who predominantly guessed were excluded owing to poor 
fits to the w model. As a result, lapse rates were excluded from future 
analyses.

Next, we grouped each participant into one of six age groups 
(Table 1 and Figure 3). A 6 (Age Group: 3, 5, 7, 9, 11, and Adults) × 3 
(Task: Number, Area, Density) mixed-measures ANOVA over accuracy 
replicated the above main effect of Task [F(2, 192) = 85.45; p < .001], 
but also showed a main effect of Age Group [F(5, 96) = 15.13; p < .001] 
and an Age Group × Task interaction [F(10, 192) = 2.00; p < .05]. As 
can be seen in Table 1, the difference between Number, Area and 
Density accuracy increases and peaks at about age 7, then decreases 
and stabilizes at about age 11. An analogous ANOVA with Number, 
Length and Time showed a main effect of Task [F(2, 184) = 47.76; 
p < .001], Age Group [F(5, 96) = 3.23; p < .01] and an Age Group × Task 
interaction [F(10, 184) = 2.94; p < .01]. As with Area and Density, the 
difference in accuracy between Number, Length and Time peaks at 
about age 7, then decreases and stabilizes. These results held if the 
adults were excluded from the ANOVA. Together, these results show 
that each dimension improved with age, but that some dimensions 
improved faster than others.

A pair of mixed-level ANOVAs over w values revealed the same pat-
tern of results (Figure 3). A 6 (Age Group: 3, 5, 7, 9, 11, and Adults) × 3 
(Task: Number, Area, Density) mixed-measures ANOVA over w val-
ues showed a main effect of Task [F(2, 92) = 11.72; p < .001], Age 
Group [F(5, 46) = 2.91; p < .05], and an Age Group × Task interaction 
[F(10, 92) = 2.24; p < .05]. An analogous ANOVA over Number, Length 
and Time showed a main effect of Task [F(2, 112) = 5.69; p < .001], Age 
Group [F(1, 56) = 7.88; p < .001], and an Age Group × Task interaction 
[F(10, 112) = 5.69; p < .001]. Thus, Weber fractions also improve with 
age, but, once again, we find that some dimensions show a faster 
improvement than others.

3.4 | Logistic growth modelling

The analyses thus far demonstrate that developmental trajectories 
for the five dimensions are not identical, but they do not reveal what 
these trajectories actually are. In order to determine the trajectory 
for each dimension and estimate the approximate age of maturity, 

we fitted the developmental data from each dimension to a series of 
logistic growth models. Logistic growth models assume that develop-
ment begins at some age of onset and continues at a constant rate 
until an asymptote is reached and developmental growth peaks. We 
found that logistic growth models were superior to any other model 
we fitted to the accuracy or w data, including piecewise linear, log 
and power models. A major advantage of logistic growth models is 
that they estimate the growth rate – the speed at which develop-
ment reaches maturity – independently from the peak itself. Thus, 
for example, if two dimensions have different peak accuracy levels, 
a non-logistic model (e.g. a power model) would mistake the lower 
asymptote in one dimension for evidence for continuing developmen-
tal growth.

We used the standard three-parameter logistic growth model 
typically used in the developmental literature (Marceau, Ram, Houts, 
Grimm, & Susman, 2011; Ram & Grim, 2015). This model assumes 
that average accuracy or w at each age is based on three parameters: 
a (peak accuracy or w at which development ends), 1/−b (the age 
of developmental onset), and c (the growth rate; lower values mean 
faster growth):

Note that because we did not measure accuracy or w in infancy, 
our ages of onset are probably slightly inflated.

Accuracy=
a

1+exp(− (b+Age∗ c))

F I G U R E   3 Average percentage correct across ratios and the best-
fit model for each of the five tasks and for each of the six age groups. 
All five dimensions show improvement with age and ratio-dependent 
performance consistent with Weber’s law. Bars indicate ±1 SD
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We fitted a separate logistic growth model over accuracy and w for 
each dimension. The best-fitting parameters were determined using R’s 
mle2 function, which converges on parameters that minimize the nega-
tive log-likelihood. In order to account for the heteroscedasticity inher-
ent in the w and age data (i.e. accuracy and w values are more variable in 
younger children), the normally distributed regression error was allowed 
to scale with 1/Age (see also Odic, Im, Eisinger, Ly, & Halberda, in press). 
The best-fitting parameters are shown in Figures 4 and 5 and in Table 3. 
We found that these models were an excellent fit to all the data.

The estimated parameters appear reasonable and replicate the 
patterns reported above. For example, the estimated peak values are 
consistent with the ANOVAs: the peak accuracy and w for Density and 
Time are worse than the peaks for area and line length, with number 
falling somewhere between. Thus, the growth models suggest that the 
difference in accuracy and w among these five dimensions persists 
even once developmental growth is complete.

Importantly, even when these different peaks are accounted 
for, we see two distinct patterns in the developmental trajectories: 
whereas density and time show slow onsets and growth rates – not 
reaching peak performance until young adulthood – number, area 
and length develop significantly sooner, in late childhood and early 
adolescence. Statistically, we found that the age of maturity for the 
accuracy models was significantly later for density compared with line-
length (Z = 2.16; p = .01), area (Z = 1.82; p = .03) and number (Z = 1.65; 
p = .049), and that age of maturity for time was marginally later than 
for line length (Z = 1.56; p = .06).

These results were even stronger for the logistic growth models 
over w: we found that the age of maturity for number was signifi-
cantly earlier than for density (Z = 11.51; p < .001), earlier than for 
time (Z = 3.22; p < .01), and significantly later than for area (Z = 3.60; 
p < .01). Similarly, the age of maturity for area was significantly earlier 
than for density (Z = 12.09; p < .001) and time (Z = 5.36; p < .01), and 
the age of maturity for lines was significantly earlier than for density 
(Z = 11.11; p < .001) and time (Z = 2.91; p < .01).

The logistic growth model data suggest that the developmental 
trajectories for the five dimensions are not all identical: while ANS 
precision is at adult-like levels by adolescence, time and density do 
not fully develop until early adulthood; Length and Area, meanwhile, 
develop either at the same time as or slightly sooner than the ANS. 
Interestingly, because some dimensions develop and peak sooner 
than others, these results also suggest that the differences in accuracy 
between the five dimensions reach their peak in early childhood, and 
then, as Density and Time plateau, later stabilize in adolescence and 
adulthood.

3.5 | Partial correlations

Finally, we turn to the central question at hand – what drives the 
development of number accuracy and w? Although the developmen-
tal trajectory modelling confirms that Number develops at a different 
rate from the other dimensions, it does not provide evidence for any 

F I G U R E   4 For each task, the average percentage correct for each 
participant and the best-fit logistic growth model. The gray shading 
indicates the 95% confidence interval around the model

F I G U R E   5 For each task, the Weber Fraction (w) for each 
participant fit by that model, along with the best-fit logistic growth 
model. The gray shading indicates the 95% confidence interval 
around the model
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independence between Number and the development of the other 
four dimensions. In order to examine whether the development of 
Number is actually independent from the development of the other 
four dimensions, we carried out a set of partial correlations, examin-
ing whether Number continues to correlate with age even when the 
accuracy and w values of the other four dimensions are controlled for.

As shown in Figure 6, we found a significant correlation between 
Number accuracy and age, even when controlling for accuracy in 
both Area and Density (r = .44; n = 85; p < .001) and when controlling 
for accuracy in Length and Time (r = .38; n = 80; p < .001). Identical 
results were obtained with Number w values with Spearman partial 
correlations (Area/Density: rho = −.45, n = 48, p < .001; Length/Time: 
rho = −.37, n = 52, p < .001). These results remain identical when 
removing the group of 2- and 3-year-old children who are near chance 
performance (controlling for Area and Density: n = 78, r = .37, p < .001; 
controlling for Length and Time: n = 67, r = .40, p < .001). Thus, devel-
opmental improvements in the ANS appear to be independent of the 
development of non-numeric dimensions, including area, density, line 
length, and time, even over the large age range we tested.

We also found that each other dimension correlated with age even 
when controlling for the other two tested in that condition (Figure 6): 
Area accuracy correlated with age when controlling for Number and 
Density (r = .21; n = 89; p < .05), Density accuracy correlated with age 
when controlling for Number and Area (r = .30; n = 89; p < .01), Length 
correlated with age when controlling for Number and Time (r = .30; 
n = 84; p < .01), and Time correlated with age when controlling for 
Number and Length (r = .37; n = 84; p < .001). These results were 
near-identical – albeit slightly weaker – when examining w for each 
dimension: Area (rho = −.33; p = .02), Density (rho = −.25; p = .08) and 
Time (rho = −.35; p < .05). Length w, however, did not correlate with 
age when controlling for Time and Number (r = −.16; n = 26; p = .26); 
this result is probably because the w model eliminates children who 
guessed randomly, showing that line-length development probably 
occurs even earlier than the above accuracy analysis shows. As dis-
cussed below, this suggests that each dimension may, in turn, have 
an important and domain-specific developmental factor, and provides 
strong evidence against a generalized magnitude system.

As noted above, one consequence of this result is that domain-
general factors, such as attention, parietal lobe development, or work-
ing memory, are unlikely to be the sole drivers of ANS development: 
because each discrimination task puts a significant load on these 
domain-general factors (e.g. the Time task required children to seri-
ally remember the duration of each tone before comparing it with the 
other), controlling for the four non-numeric dimensions should also 
incidentally control for the majority of these ancillary, domain-general 
individual differences.

3.6 | Role of inhibitory control

Recently, Gilmore et al. (2013) suggested that individual differences in 
the ANS might be largely reflective of differences in inhibitory control: 
Incongruent trials – those in which total surface area and number disa-
gree in the answer – require the participant to actively inhibit the non-
numeric dimensions competing for the response. Given that inhibitory 
control is well known to develop with age (Dowsett & Livesey, 2000; 
Munakata et al., 2011), could the developmental improvements in the 
ANS be merely reflecting these improvements in inhibitory control?

In order to assess whether the development of inhibitory control 
could account for our results, we examined children’s performance 
on the Number task Congruent vs. Incongruent trials and correlated 
them with age. We found an approaching but non-significant differ-
ence between Congruent (M = 71.4%; SD = 15.4%) and Incongruent 
trials [M = 69.14%; SD = 18.4%; t(197) = 1.56, p = .11]. In addition, 
and despite the large sample size, we found no correlation between 
the Congruent/Incongruent difference and age (Figure 7; r = −0.07; 
p = .35). This difference remained non-significant even in our young-
est sample of 3-year-olds [t(23) = 0.03; p = .50]. Similarly, a one-way 
ANOVA over all Age Groups with the Congruent/Incongruent dif-
ference failed to find a main effect of Age Group [F(1, 196) = 1.80; 
p = .18].

Our data point to the conclusion either that inhibitory control can-
not account for the development of ANS precision, or alternatively 
that the Congruent/Incongruent difference is not a good measure of 
inhibitory control. In support of the measure, however, we did find a 

TABLE  3 The parameters of the best-fit logistic growth models for each dimension across all participants

Dimension DV Peak value (a) Age of onset (1/−b) Growth rate (c)
Approximate age of 
maturity (SE)

Number Accuracy 84.6 (2.14) 1.55 (5.59) 0.33 (0.04) 15.6 (2.14)

w 0.16 (0.02) 1.58 (0.40) 0.56 (0.08) 11.71 (0.41)

Area Accuracy 92.1 (2.16) 2.64 (4.11) 0.33 (0.06) 14.8 (2.17)

w 0.09 (0.01) 0.68 (0.81) 0.89 (0.22) 8.37 (0.84)

Density Accuracy 75.5 (3.90) 3.50 (3.79) 0.20 (0.05) 22.95 (3.91)

w 0.26 (0.08) 2.35 (0.99) 0.23 (0.13) 24.13 (0.99)

Line length Accuracy 93.7 (2.37) 1.81 (2.98) 0.39 (0.09) 13.02 (2.40)

w 0.05 (0.01) 0.56 (0.41) 0.29 (0.07) 11.92 (0.46)

Time Accuracy 82.3 (3.29) 2.22 (4.25) 0.25 (0.05) 19.39 (3.30)

w 0.20 (0.03) 0.60 (0.82) 0.64 (0.14) 14.69 (0.83)
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significant correlation between the Congruent/Incongruent difference 
in the Number task and Time task accuracy, even when controlling for 
Age [r(82) = −.30, p < .01], as would be expected given that the serial 
nature of the Time task places a higher load on working memory and 
executive control (Droit-Volet et al., 2008). We thus believe that the 
most likely conclusion is that the Congruent/Incongruent difference 
can (in part) depend on inhibitory control, but that this factor does not, 
in turn, drive the development of ANS precision.

4  | GENERAL DISCUSSION

From early in life, children have an intuitive and automatic representa-
tion of number – an Approximate Number System (ANS). Despite its 

ubiquity, the ANS undergoes significant development from infancy to 
adulthood. In order to determine which factors are the primary drivers 
of this development, we tested a large sample of 2-  to 12-year-old 
children and adults on five discrimination tasks: number, area, density, 
length, and time. In addition to being the first to provide estimates of 
accuracy and Weber fractions for each of these dimensions across a 
broad age range, we report on three major findings. First, we find that 
the developmental trajectory of the ANS is distinct from the develop-
mental trajectory of area, density, length, and time perception: while 
ANS precision is at adult-like levels by adolescence, time and density 
do not fully develop until early adulthood; length and area, meanwhile, 
develop either at the same time as or sooner than the ANS. Second, 
we find that ANS accuracy and Weber fractions continue to improve 
with age, even when individual differences in area, density, length, 

F I G U R E   6 The partial correlations 
between each dimension and age when 
controlling for the other two dimensions. 
All six partial correlations are significant at 
p < .05



12 of 15  |     ODIC

and time are controlled for. Hence, ANS development is independent 
from the four tested dimensions. Finally, we find that the difference 
between Incongruent and Congruent ANS trials – thought to index a 
participant’s ability to inhibit non-numeric cues (Gilmore et al., 2013) 
– does not correlate with age and cannot explain the development of 
ANS precision.

Together, these results suggest that developmental improvements 
in the ANS are not driven by improvements in other non-numeric quan-
tities, including area, density, length, and time. In turn, these results 
are incompatible with recent suggestions that ANS discrimination 
tasks are significantly biased by children’s attention to or the use of 
non-numeric cues such as area, convex hull, etc. (e.g. Cantrell & Smith, 
2013; Clayton, Gilmore, & Inglis, 2015; Defever et al., 2013; Gebuis & 
Reynvoet, 2012; Szucs et al., 2013). In other words, by controlling for 
the four dimensions most often claimed to be used during ANS tasks, 
we have shown that area, density, length, and time are not the sole 
or even the primary contributors to the developmental and individual 
differences in ANS precision. The distinct and independent develop-
mental trajectories are also a challenge to the generalized magnitude 
system theory, and are instead more consistent with findings showing 
independence between number, space, and time, and place the rela-
tionships between various dimensions largely due to shared decision-
making components (Anobile, Cicchini, & Burr, in press; Cappelletti, 
Freeman, & Cipolotti, 2011; Castelli, Glaser, & Butterworth, 2006; 
Odic et al., 2016; Odic & Halberda, 2015; Odic, Libertus, et al., 2013; 
Starr & Brannon, 2015b).

Our results are also inconsistent with the idea that improvements 
in the ANS are driven solely by domain-general improvements in 
attention, working memory, decision making, or parietal lobe matu-
ration, as these factors would be shared between number and non-
numeric quantity discrimination tasks (Droit-Volet et al., 2008; Odic 
et al., 2016; Pinel et al., 2004; Van Opstal & Verguts, 2013). Similarly, 
we found no evidence that ANS development is driven by children’s 
improving ability to attend to numeric cues. Although it is possible that 
the ANS discrimination task places a load on some domain-general 
factor that is not used during area, density, length, or time discrimina-
tion, this explanation seems unlikely. Consider, for example, that we 
found no influence of – or even correlation with – performance on the 

density task, which even presented the stimuli as spatially separated 
blue and yellow dots. Ultimately, we do not wish to claim that domain-
general factors have no impact on ANS performance, as other work 
has clearly shown that they do (Droit-Volet et al., 2008), but rather 
we believe that our work shows that these are not the only nor the 
primary factors that drive ANS development.

Instead, our results point to an important source of domain-specific 
maturation or experience that drives improvements in ANS precision. 
Our results do not, however, identify what these domain-specific fac-
tors are. Broadly speaking, these improvements may be related either 
to children’s experience with number (e.g. learning to manipulate num-
bers in the context of mathematics), or to domain-specific maturation 
of the ANS itself. Previous work by Piazza et al. (2013), investigating 
ANS development in the Amazonian Munduruku tribe, showed that 
domain-specific education in mathematics significantly improves ANS 
precision. However, as the most dramatic changes in ANS precision 
occur prior to age 7 – when most children in our sample begin for-
mal schooling – factors outside education must also play a role. One 
especially likely candidate is the maturation of the computations 
that encode the ANS (e.g. the object localization map proposed by 
Dehaene and Changeux, 1993), or the maturation of the specific neu-
rons that encode number in the visual system and the parietal lobe. 
For example, Burr and Ross (2008; see also Anobile et al., in press; 
Odic & Halberda, 2015; Ross & Burr, 2010) argue that number is a pri-
mary visual feature, encoded by a set of dedicated neurons in the early 
visual cortex; as a result, the development of ANS precision may also 
be driven by the development and tuning of domain-specific neurons 
in the early visual system. Our work suggests that – whether at the 
level of encoding or of representations – the cognitive processes that 
most tightly track individual and developmental differences are disso-
ciable for number compared with the other four dimensions. Exploring 
these possibilities will be an important avenue for future work.

Although the generalized magnitude system has often been 
hypothesized to persist into adulthood (e.g. Bueti & Walsh, 2009; 
Lu et al., 2011; Xuan et al., 2007), developmental psychologists have 
more recently claimed that newborns begin with a unified, ‘one-bit’ 
sense of magnitude that differentiates with experience and matura-
tion (Cantrell & Smith, 2013; Lourenco & Longo, 2011). Although our 
data do not provide any direct evidence against a differentiation view, 
they do provide important caveats for such a theory. First, our results 
show that different dimensions develop at different rates – while area 
and length develop quickly, peaking in early childhood, density and 
time do not fully develop until young adulthood. Under the differ-
entiation view, such a pattern would imply that children learn about 
length and area prior to learning about time and density. Hence, any 
potential learning mechanism that allows for differentiation between 
magnitudes will have to claim that learning about some spatiotempo-
ral properties (e.g. area, length) is easier than learning about others. 
Second, our results provide a developmental trajectory for any poten-
tial differentiation: on average, we found that differences in accuracy 
and precision between the five tested dimensions peak at about age 
7 (and subsequently decrease and stabilize). Finally, our work suggests 
that – once differentiated – each dimension follows its own trajectory, 

F I G U R E   7 The correlation between Age and each participant’s 
difference score between Congruent and Incongruent trial accuracy 
(thought to index inhibitory control). We found no significant 
correlation between age and this Incongruent trial difference
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independent of the others. Thus, whatever the common currency or 
shared resources between number, area, density, length, and time are, 
they are not the ones primarily driving developmental or individual dif-
ferences in accuracy and precision.

Interestingly, beyond identifying that ANS precision develops inde-
pendently of the other four dimensions, we further found that each of 
the four non-numeric dimensions showed the same domain-specific 
developmental pattern as the ANS: area, density, length, and time all 
continued to develop with age, even when controlling for the ANS and 
the other tested dimension. These results broadly suggest that – to the 
extent that each dimension may be modular or independent from the 
other from preschool onwards – some non-shared factor drives the 
development of each. By analogy, consider that many of children’s lan-
guage abilities, such as knowledge of open-class vocabulary, develop 
significantly before many spatial manipulation and navigation abilities 
(Landau & Ferrara, 2013; see Karmiloff-Smith et al., 2004 for a dis-
cussion of distinct developmental trajectories within face perception). 
In a similar way, children’s perception of area and length may mature 
significantly earlier compared with density and time.

One crucial point concerns whether children relied on any non-
numeric cues during the Number discrimination task. Traditionally, 
differences between the congruent and incongruent trials have 
been used to suggest the use of non-numeric cues during ANS dis-
crimination tasks (Dakin et al., 2011; Defever et al., 2013; Gebuis & 
Reynvoet, 2012; Gebuis & Van Der Smagt, 2011; Hurewitz, Gelman, 
& Schnitzer, 2006). We, however, failed to observe this difference at 
any age, including for the youngest section of our sample who per-
formed at- or near-chance on the Number task. Furthermore, we find 
that individual differences in ANS acuity continue to correlate with 
age, even when controlling for the other dimensions. One possibility 
is that children in our sample used non-numeric cues in a haphazard 
and inconsistent way that could not be detected through the reported 
congruency effects and that, in addition, this use yields a non-linear 
relationship between number and the four dimensions that could not 
be statistically partialled out. Such an alternative explanation leaves 
much to be answered, such as what aspect of number performance 
continues to develop when controlling for individual differences in 
area, density, length, and time; and, if children do not use non-numeric 
cues on every trial, what they use instead, etc. Although the results 
presented here are most consistent with the idea of a dedicated sys-
tem for approximating number, we do not have direct evidence against 
these alternative accounts and they remain open routes of inquiry.

An important limitation of this work is that we could study the chil-
dren only cross-sectionally. Although we do not expect strong cohort 
effects, a true understanding of developmental trajectories would 
ideally use longitudinal data. Longitudinal data would also capture 
whether a developmental boost in one dimension leads to a cascade 
of changes in another.

In conclusion, our results suggest that the development of ANS 
precision is independent of children’s perception of area, density, 
length, or time. These results place the development of number, space, 
and time representation into a broader and richer developmental 
context – showing both the similarities and differences in how these 

representations mature – and provide ample opportunity for future 
work aimed at understanding how number representations are actu-
ally extracted from a visual scene, and how domain-specific ANS rep-
resentations may contribute to a variety of other cognitive abilities, 
including mathematics.
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NOTES
1	Owing to an experimenter error, eight children were running in a Number/
Area/Lines condition. Excluding these children changes none of the results 
reported here, and in order to maximize our sample all of these children 
were kept in the analyses.

2	An inspection of our figures and tables reveals that our group of 2- and 
3-year-olds was generally around chance-levels, suggesting that they 
may not have understood the task. Nevertheless, removing this group of 
children did not change any of our results (e.g. the correlation between 
ANS and age becomes r = .61, p < .001, when this group of 24 partici-
pants is removed).
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